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Abstract: The application of the Particle Swarm Optimization (PSO) algorithm successfully applied to wide range of 

engineering problems. In very recent this algorithm becomes very popular due to its simplicity and effectiveness. 

Researchers have explored PSO algorithm and made it adaptive with dynamic problem and these modified algorithm 

called as Adaptive Particle Swarm Optimization (APSO) algorithm. APSO algorithm is explored in this paper. The 

choice of this algorithm is made over Classical Particle Swarm Optimization (CPSO) and this is explained for different 

benchmark functions as Test functions. In order to find out global minima APSO showed very good performance for 

these Test functions. This algorithm can be successfully applied to various digital communication systems for 
improving performance. 
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1.  INTRODUCTION 

 

Several evolutionary algorithms have emerged in the past years from biological entities behavior and evolution. 

Darwin’s theory of evolution is natural selection is inspiration source of for EAs. EAs are widely used for the solution 

of single and multi-objective optimization problems. Swarm Intelligence (SI) algorithms are also a special type of EAs. 

SI can be defined as the collective behavior of decentralized and self organized swarms. SI algorithms among others 

include Particle Swarm Optimization (PSO) [1] and Ant Colony Optimization [2]. 

PSO is an evolutionary optimization algorithm that is formed form the swarm behavior of bird flocking and fish 
schooling [3]. PSO is an easy to implement with less computational complexity. Particle Swarm Optimization (PSO) 

is a powerful method of optimization that has been widely used for solving different optimization problems. It is 

widely used to find the global optimum solution in a complex search space. 

In this paper discuss on theoretical as well as detailed explanation of the PSO algorithm. Apart from this, advantages 

and disadvantages, the effects of the various parameters have been discussed. Finally, this dissertation presents 

improved version of PSO also. In section 2, different benchmark functions as test problems are selected for 

performance evolution and mathematical modeling of these functions are described.  

 

2.  CLASSICAL PARTICLE SWARM OPTIMIZATION 

 

Particle Swarm Optimization (PSO) was introduced by Kennedy and Eberhart in 1995. This optimization algorithm is 
evolutionary computation technique. This modem algorithm is very effective to solve global optimization problems 

[4]. 

It starts with random initialized population or swarm and population will be modified in search of optimal solution. 

Population of random solutions in swarm is defined as a "particle". Initially, every particle flies into a search space. 

Then each particle moves as per flying experiences of itself and its neighborhood. At each iteration, position of 

particles keep updating to finds a global optimal solution. In comparison of other optimization methods, PSO is 

simple to implement and fast convergence response [5].  

PSO algorithm consists of ‘n’ particles in swarm that represents candidate solution. Each particle represented by its 

current position ‘x’ and current velocity ‘v’ in ‘d’-dimensional space. Wherever it is iterative process, in every 

iteration the position is getting updated based on best known individual position as well as best known swarm 

position. 

vi
d iter + 1 = vi

d iter + c1 ∗ R1 0,1 ∗  pbesti
d iter − xi

d iter  + c2 ∗ R2 0,1 ∗  gbestd iter − xi
d iter   (1) 

 xi
d iter + 1 = xi

d iter + vi
d iter + 1      (2) 



IJIREEICE IJIREEICE  ISSN (Online) 2321 – 2004 
ISSN (Print) 2321 – 5526 

 

International Journal of Innovative Research in 
Electrical, Electronics, Instrumentation and Control Engineering 

ISO 3297:2007 Certified 

Vol. 5, Issue 10, October 2017 
 

Copyright to IJIREEICE                                                   DOI 10.17148/IJIREEICE.2017.51007                                                                    37 

UGC Approved Journal 

iter   Iteration number 

i   Particle index 

d   Dimension 

vi
d    Velocity of ith  particle in dth  dimension 

xi
d          ith  Particle position in dth  dimension 

c1, c2    Acceleration constants   

R1, R2   Random numbers with uniform distribution [0, 1] 

gbestd Swarm global best position in dth  dimension 

pbesti
d  Particle best position of ith  particle in dth  dimension 

 

Where xi
d  and vi

d  are position and velocity for ith  particle in dth  dimension respectively. pbesti
d  is particle individual 

best known position and gbestd is swarm global best known position. c1  and c2 are acceleration constants. R1 and R2  

are random numbers in range of [0, 1]. 

 

3. PSO ALGORITHM PARAMETERS 

 

PSO parameters may affect performance for optimization. For any given optimization problem, PSO parameter’s 

values have large impact on the efficiency of the PSO method. The basic PSO parameters are swarm size or number 

of particles, iterations, velocities, and acceleration coefficients. 

 

Swarm size 

Swarm size is the number of particles in the swarm. A bigger swarm size may reduce the number of iterations need to 

obtain a good optimization result but it may increase the computational complexity per iteration as well as consume 

more time. 

Iterations 
The number of iterations also play important role to obtain a good result. Low number of iterations may stop the 

search process prematurely and large number of iterations may add computational complexity and time consuming. 

Velocity Components 

The velocity components are also very important for updating particle’s velocity. Particle velocity vi
d  is confined 

between −vmax
d  and vmax

d . If vmax
d  is too big then solution is away from global best solution and if it is too small then 

solution may not reach to beat solution. 

Acceleration coefficients 

The acceleration coefficients c1 and c2, together with the random values, maintain the stochastic influence of the 

cognitive and social components of the particle’s velocity respectively. In general fixed values of acceleration 

coefficient are being considered, but wrong initialization of may result in diverse from optimum point. 
Due to fast convergence, simplicity and easy implementation, PSO widely adapted for optimization in different fields. 

 

4. ADVANTAGES AND DISADVANTAGES OF CPSO 

 

PSO algorithm is the one of the most powerful methods for solving the complex global optimization problems while 

there are some disadvantages of the PSO algorithm. The advantages and disadvantages of PSO are discussed below: 

Advantages 

PSO is a simple algorithm to implement. It can be applied both in scientific research and engineering problems.  In 

PSO algorithm, there are very few parameters in compare to other optimization techniques. PSO gives fast 

convergence. 

Disadvantages 
Wrong values of PSO parameters may diverse the results from optimum or may result slow convergence. 

 

5. ADAPTIVE PARTICLE SWARM OPTIMIZATION 

 

This algorithm was proposed by Arumugam and Rao [6]. Five principles of swarm intelligence have been discussed by 

them: 

1. proximity principle 

2. diverse response principle 

3. quality principle 

4. stability principle 

5. adaptability principle 
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This algorithm considered global and local best fitness values into account, satisfying the above principles also. The 

modification in inertia is done as: 

𝑤 = 1.1 −
𝐹(𝑔𝑏𝑒𝑠𝑡 )

𝐴𝑉𝐺 (𝐹 𝑝𝑏𝑒𝑠 𝑡𝑖 )
                            (3) 

 

𝐴𝑉𝐺 𝑝𝑏𝑒𝑠𝑡𝑖  is the average of local best fitness values. After iteration, inertia weight is gets updated with global best 

and local best fitness values. More the difference between global and local fitness values, result a larger value of inertia 
weight. A larger value of the ratio implies that the average best fitness value of particles nears the global best value and 

hence calls for a more intensive search by reducing the inertia weight of the particles. So it may result a dynamic 

velocity of particles. Reason of selecting 1.1 is that the inertia weight never becomes to zero in case the global best 

fitness value equals the average value. This inertia weight is then incorporated in the velocity update equation, as 

shown below: 

𝑣𝑖
𝑑 𝑖𝑡𝑒𝑟 + 1 = 𝑤 ∗ 𝑣𝑖

𝑑 𝑖ter + c1 ∗ R1 0,1 ∗  pbesti
d iter − xi

d iter  + c2 ∗ R2 0,1 ∗  gbestd iter − xi
d iter   

(4) 

Where w is inertia weight. 

Flowchart of APSO is mentioned below in Fig. 1. 

 

START

Initialize Population

and set up parameters for 

each particle

Update the velocity and 

position of each particle

Evaluate fitness of each 

particle (xi)

Update Inertia

W=1.1 - (Fitness(gbest) / 

Average of Fitness (pbest)i)

Iteration increment

Stop

Stopping Criteria is met ?

YES

NO

 
Fig. 1 Flowchart of APSO 

 

6. TEST FUNCTIONS 

 

To compare the implemented PSO variants, different optimization benchmark problems have been selected based on 

their use in the literature. PSO variants that perform well for the optimization benchmark problems will likely perform 

well for other optimization problems in digital communication systems. For performance justification of any new 

optimization, it is essential to validate its performance and compare with other existing algorithms over different types 

of test functions. 
Test functions are very important for validating and comparing the performance of optimization algorithms. Test 

functions selected for present study have diverse properties so that optimization algorithms performance can be 

examined fairly. For this purpose, we have reviewed and compiled 8 different benchmark functions. Different 

optimization test problems have been implemented and are used to compare different PSO and proposed APSO variant. 

Test problems have been implemented, including the Ackley test problem Equation (5), bird test function Equation (6), 

Giunta test problem Equation (7), the Griewank test problem Equation (8) and Rastrigin test problem Equation (9). 

 

Ackley test function 
The Ackley test function is widely used for testing optimization algorithms. Its plot shows that it is characterize by a 

nearly flat outer region, and a large valley at the centre. In this test function for optimization algorithms, there is 

probability to be trapped in one of its many local minima.  

The Ackley test function has the following objective function [7]: 
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f x = −a exp( −b  
1

d
 xi

2d
i=1 ) − exp(

1

d
 cos cxi + a + exp(1)d

i=1   (5) 

 

Where a=-20, b=0.2, c=2*pi and d=2. 

The topography of Ackley for two dimensions is shown in Fig. 2. 

 

 
Fig. 2 The topography of Ackley for two dimensions 

 
Search space for defined problem is, 

−20 < x1 < 20 

−20 < x2 < 20 
The global minimum is at f(x1, x2) = f(3, 0.5) = 0. 

 

Bird test function 

This function is based on differentiable, non-scalable and multi-model.  

f x = sin x1 e(1−cos  x2 )2
+ cos x2 e(1−sin (x1))2

+ (x1 − x2)2   (6) 
 

The topography of bird test function for two dimensions is shown in Fig. 3. 

 

 
Fig. 3 The topography of Bird for two dimensions 

 
Search space for defined problem is, 

−2π < x1 < 2π 

−2π < x2 < 2π 
The global minimum is located at (−1.58214, −3.13024) is −106.764537. 

 

Giunta Test Function 

Giunta Test Function is Continuous; Differentiable and Multimodal bases test function. 

The topography of Giunta for two dimensions is shown in Fig. 4. 

f x = 0.6 +  [sin 
16

15
xi − 1 + sin2  

16

15
xi − 1 +

1

50
sin  4  

16

15
xi − 1  ]2

i=1   (7) 
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Fig. 4 The topography of Giunta for two dimensions 

 

Search space for defined problem is, 

−10 < x1 < 10 

−10 < x2 < 10 
The global minima at (0.46732,0.46732) is 0.064470. 

 

Griewank test function 

The Griewank function has many local minima within regularly distributed bounded search space. 

The topography of Griewank for two dimensions is shown in Fig. 5. 

f x =  
xi

2

4000
− cos 

xi

 i
 + 1d

i=1
d
i=1     (8) 

 

 
Fig. 5 The topography of Griewank for two dimensions 

 
Search space for defined problem is, 

−100 < (x1 , x2) < 100 

The global minimum is at f(x1, x2) = f(0, 0) is 0. 

 

7. SIMULATION RESULTS 

 

In this paper, the proposed APSO optimization algorithm is applied to solve the different test functions and compared 

with CPSO optimization results. There are 5 different test functions selected as test function to justify the performance 

of proposed optimization algorithm. The simulations are carried out using Matlab simulation tool. Different parameters 

for CPSO and APSO selected for present study is shown in appendix. Maximum iterations for both algorithms are 200 

and initial swarm is randomly generated. There are 10 different runs have been conducted for each test function.  

 

Test Function 1 (Ackley): 

Fig. 6 shows the iteration of each algorithm to hit 1% tolerance band of best fitness value, e.g. for test function 1, 0 is 

best fitness value and from starting point to achieve 0.01 to 0 value, it takes 106 iteration. To find out best fitness value, 

each run does not assure to achieve same results due to stochastic nature of optimization algorithms. 
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Fig. 6 Iteration to enter 1% tolerance band of global minima for CPSO and APSO 

 
Table 1 shows the position in two dimensional area for best fitness value or minima find out by optimization algorithm 

and in this table best fitness value find out by CPSO and APSO are shown as well as corresponding positions of these. 

 

Table- 1 Best fitness value and corresponding positions for CPSO and APSO for Test Function 1 

 
TF 1 CPSO APSO 

 Position Best Fitness value Position Best Fitness value 

 x1 x2 f(x) x1 x2 f(x) 

Run 1 -0.00039 -0.00213 0.006280 0.00042 -0.00042 0.00170 

Run 2 0.00145 -0.00178 0.006655 0 0 0 

Run 3 0.00108 0.000716 0.003713 0 0 0 

Run 4 -0.00020 -0.000898 0.002625 0 0 0 

Run 5 -0.00190 -0.000889 0.006075 0 0 0 

Run 6 -0.002375 0.001354 0.007932 0 0 0 

Run 7 0 0.003360 0.009808 0 0 0 

Run 8 0.001018 -0.000542 0.003299 0 0 0 

Run 9 -0.00057 -0.002103 0.006292 0 0 0 

Run 10 0.004002 0.0015434 0.012622 0 0 0 

 

Fig. 7 shows the mean of fitness of each particle in swarm, in present study swarm size is 200, means 200 particle have 

different fitness, so mean fitness is, 

f(x)mean =  f(x)i
200
i=1      (9) 

 

Fig. 8 shows the best fitness of in swarm with respect to iteration for CPSO and APSO. 

 
Fig. 7 Mean of different fitness of every iteration for CPSO and APSO 
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Fig. 8 Best fitness at each iteration for CPSO and APSO 

 
Test Function 2 (Bird): 

Fig. 9 shows the iteration of each algorithm to hit 1% tolerance band of best fitness value for 10 different runs. 

 
Fig. 9 Iteration to enter 1% tolerance band of global minima for CPSO and APSO for Test Function 2 

 
Table 2 shows the numerical representation of iteration to enter in 1% band in global minima for Test Function 2. 

Table 2 shows the position in two dimensional area for best fitness value or minima for test function 2 to find out by 

optimization algorithm and in this table best fitness value find out by CPSO and APSO are shown as well as 

corresponding positions of these. 

 

Table- 2 Best fitness value and corresponding positions for CPSO and APSO for Test Function 2 

 

TF 2 CPSO APSO 

 Position Best Fitness value Position Best Fitness value 

 x1 x2 f(x) x1 x2 f(x) 

Run 1 -1.58217 -3.12964 -106.76441 -1.58214 -3.13024 -106.76453 

Run 2 -1.58382 -3.13135 -106.76398 4.70104 3.15293 -106.76453 

Run 3 4.70232 3.15171 -106.76410 -1.5821 -3.13025 -106.76453 

Run 4 -1.58302 -3.12999 -106.76442 4.69446 3.15667 -106.75663 

Run 5 4.70063 3.15255 -106.76449 4.70104 3.15293 -106.76453 

Run 6 -1.58127 -3.13097 -106.76435 4.70104 3.15293 -106.76453 

Run 7 -1.58251 -3.13051 -106.76450 -1.58214 -3.13024 -106.76453 

Run 8 4.70226 3.15473 -106.76389 4.70414 3.15320 -106.76320 

Run 9 -1.58301 -3.13013 -106.76443 4.70103 3.15296 -106.76453 

Run 10 4.70064 3.15402 -106.76435 4.70104 3.15293 -106.764536 

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Best Fitness of Test Function 1

Iteration

B
e
s
t 

F
it
n
e
s
s

 

 

CPSO

APSO

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30
Best iteration for Test Function 2

Different Run

B
e
s
t 

it
e
ra

ti
o
n

 

 

CPSO

APSO



IJIREEICE IJIREEICE  ISSN (Online) 2321 – 2004 
ISSN (Print) 2321 – 5526 

 

International Journal of Innovative Research in 
Electrical, Electronics, Instrumentation and Control Engineering 

ISO 3297:2007 Certified 

Vol. 5, Issue 10, October 2017 
 

Copyright to IJIREEICE                                                   DOI 10.17148/IJIREEICE.2017.51007                                                                    43 

UGC Approved Journal 

Fig. 10 shows the mean fitness and Fig. 11 shows the best fitness with respect to iteration for CPSO and APSO for Test 

Function 2. 
 

 
Fig. 10 Mean of different fitness at each iteration for CPSO and APSO for Test Function 2 

 

 
Fig. 11 Best fitness at each iteration for CPSO and APSO for Test Function 2 

 

Test Function 3 (Giunta): 

Fig. 12 shows the iteration of each algorithm to hit 1% tolerance band of best fitness value for 10 different runs. 

 

 
Fig. 12 Iteration to enter 1% tolerance band of global minima for CPSO and APSO for Test Function 3 
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Table 3 shows the position in two dimensional area for best fitness value or minima for test function 3 to find out by 

optimization algorithm and in this table best fitness value find out by CPSO and APSO are shown as well as 
corresponding positions of these. 

 

Table- 3 Best fitness value and corresponding positions for CPSO and APSO for Test Function 3 

 
TF 3 CPSO APSO 

 Position Best Fitness value Position Best Fitness value 

 x1 x2 f(x) x1 x2 f(x) 

Run 1 0.4672569 0.4673036 0.06447042 0.467238 0.46728 0.06447043 

Run 2 0.4673337 0.4673587 0.06447042 0.467320 0.46732 0.06447042 

Run 3 0.4673552 0.4674029 0.06447042 0.467320 0.46732 0.06447042 

Run 4 0.4672804 0.4674181 0.06447043 0.467320 0.46732 0.06447042 

Run 5 0.4672119 0.4674182 0.06447044 0.467320 0.46732 0.06447042 

Run 6 0.4672721 0.4674558 0.06447044 0.467320 0.46732 0.06447042 

Run 7 0.4673244 0.4673028 0.06447042 0.467320 0.46732 0.06447042 

Run 8 0.4672764 0.4673466 0.06447042 0.467320 0.46732 0.06447042 

Run 9 0.4672338 0.4671832 0.06447044 0.467320 0.46732 0.06447042 

Run 10 0.4674419 0.4672967 0.06447043 0.467320 0.46732 0.06447042 

 

Fig. 13 and Fig. 14 show the mean fitness and best fitness with respect to iteration for CPSO and APSO respectively 

for Test Function 3. 
 

 
Fig. 13 Mean of different fitness at each iteration for CPSO and APSO for Test Function 3 

 

 
Fig. 14 Best fitness at each iteration for CPSO and APSO for Test Function 3 
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Test Function 4 (Griewank): 

Fig. 15 shows the iteration of each algorithm to hit 1% tolerance band of best fitness value for 10 different runs. 
 

 
Fig. 15 Iteration to enter 1% tolerance band of global minima for CPSO and APSO for Test Function 4 

 

Table 4 shows the position in two dimensional area for best fitness value or minima for test function 4 to find out by 

optimization algorithm and in this table best fitness value find out by CPSO and APSO are shown as well as 

corresponding positions of these. 
 

Table- 4 Best fitness value and corresponding positions for CPSO and APSO for Test Function 4 
 

TF 4 CPSO APSO 

 Position Best Fitness value Position Best Fitness value 

 x1 x2 f(x) x1 x2 f(x) 

Run 1 -0.00136 -0.01001 0 0 -0.01029 0 

Run 2 -3.10259 -4.36442 0.145669 0.00116 -0.01763 0 

Run 3 0.007380 0.02453 0.000180 -0.04956 0.00618 0.00125 

Run 4 -0.011823 -0.00949 0 -0.04630 0.02061 0.00119 

Run 5 3.113180 4.35487 0.145622 0.00574 -0.01767 0 

Run 6 -0.00906 0.00925 0 0 0 0 

Run 7 -3.11065 -4.34979 0.1456275 0.00982 0.00040 0 

Run 8 -0.00815 0.00561 0 0.014741 0.01827 0.00019 

Run 9 3.113811 -4.35181 0.145628 -0.00718 0.03245 0.00029 

Run 10 -0.00347 0.00610 0 -0.00288 -0.03167 0.00025 

 
Fig. 16 and Fig. 17 show the mean fitness and best fitness with respect to iteration for CPSO and APSO respectively 

for Test Function 4. 

 
Fig. 16 Mean of different fitness at each iteration for CPSO and APSO for Test Function 4 
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Fig. 17 Best fitness at each iteration for CPSO and APSO for Test Function 4 

 

On the basis of all above results, it can be concluded that APSO gives better results in comparison of CPSO. There are 

5 different Test functions considered of different shapes for examination the optimization algorithm. In these Test 

functions, proposed APSO optimization algorithm shows better results. 

 

8. CONCLUSION 

 

Finding optimum performance is most prime requirement in of any system and in day to day increasing complexity of 
these systems made it as challenging task. Many optimization techniques are used for this purpose but PSO is shown 

it suitable for this purpose due to simplicity and fast convergence rate. In this work, CPSO and APSO are explored to 

find global optimum for different benchmark test functions. APSO shown better performance than CPSO in terms fast 

convergence rate and does not bound to local optima. There are 5 different well known benchmark test functions have 

been used for present study. Nature of these objective functions differs from each other. APSO showed better 

performance for these test function than it will show better performance for digital communication system also. 
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